⋮    ⋮  

AMD Radeon Instinct MI100 ‘CDNA GPU’ Alleged Performance Numbers Show Its Faster Than NVIDIA’s A100 in FP32 Compute, Impressive Perf/Value

Submit

Alleged performance numbers and details of AMD's next-generation CDNA GPU based Radeon Instinct MI100 accelerator have leaked out by AdoredTV. In an exclusive post, AdoredTV covers performance benchmarks of the upcoming HPC GPU against NVIDIA's Volta and Ampere GPUs.

AMD Radeon Instinct MI100 'CDNA' GPU Performance Benchmarks Leak Out, Allegedly Faster Than NVIDIA's Ampere A100 In FP32 Compute With Better Perf/Value

AdoredTV claims that the slides they have received are from the official AMD Radeon Instinct MI100 presentation. The ones posted on the source seem to be modified versions of the original ones but details are kept intact. In our previous post, we confirmed that the Radeon Instinct MI100 GPU was on its way to the market in 2H 2020. The slides from AdoredTV shed some more light on the launch plans and server configurations that we could expect from AMD and its partners in 2020 & beyond.

AMD & Intel To Host Their CES 2022 Press Conferences on January 4th 2022, Expect Announcements Galore!

AMD Radeon Instinct MI100 1U Server Specs

First up, AMD is planning to unveil an HPC specific server which would feature 2P design with dual AMD EPYC CPUs that could either be based on the Rome or Milan generation. Each EPYC CPU will be connected to two Radeon Instinct MI100 accelerators through the 2nd Generation Infinity Fabric interconnect. The four GPUs will be able to deliver a sustained 136 TFLOPs of FP32 (SGEMM) output which points out to around 34 TFLOPs of FP32 compute per GPU. Each Radeon Instinct MI100 GPU will have a TDP of 300W.

Additional specifications include total GPU PCIe bandwidth of 256 GB/s which is made possible on the Gen 4 protocol. The combined memory bandwidth of the four GPUs is at 4.9 TB/s which means that AMD is using HBM2e DRAM dies (each GPU pumps out 1.225 TB/s bandwidth). The combined memory pool is 128 GB or 32 GB per GPU. This suggests that AMD is still using 4 HBM2 DRAM stack technology and each stack housing 8-hi DRAM dies. It looks like XGMI won't be offered on standard configurations and will be kept limited to specialized 1U racks.

As far as availability is concerned, the 1U server with AMD EPYC (Rome / Milan) HPC CPUs is said to launch by December 2020 while an Intel Xeon variant is also expected to launch in February 2021.

Gigabyte Raises Prices of Its AMD Radeon RX 6000 Series Graphics Cards By Up To 6%, Gaming GPUs Get More Expensive Before Start of New Year

AMD Radeon Instinct MI100 3U Server Specs

The second 3U server is expected to launch in March 2021 and will offer even beefier specifications such as 8 Radeon Instinct MI100 GPUs connected to two EPYC CPUs. Each group of four Instinct MI 100's will be connected together through an XGMI (100 GB/s bi-directional) and a quad bandwidth of 1.2 TB/s. The four Instinct accelerators would equal a total of 272 TFLOPs of FP32 compute, 512 GB per second PCIe bandwidth, 9.8 TB/s HBM bandwidth, and 256 GB of memory DRAM capacity. The rack will have a rated power draw of 3kW.

AMD Radeon Instinct Accelerators 2020

Accelerator NameAMD Instinct MI300AMD Instinct MI250XAMD Instinct MI250AMD Instinct MI210AMD Instinct MI100AMD Radeon Instinct MI60AMD Radeon Instinct MI50AMD Radeon Instinct MI25AMD Radeon Instinct MI8AMD Radeon Instinct MI6
GPU ArchitectureTBA (CDNA 3)Aldebaran (CDNA 2)Aldebaran (CDNA 2)Aldebaran (CDNA 2)Arcturus (CDNA 1)Vega 20Vega 20Vega 10Fiji XTPolaris 10
GPU Process NodeAdvanced Process Node6nm6nm6nm7nm FinFET7nm FinFET7nm FinFET14nm FinFET28nm14nm FinFET
GPU Dies4 (MCM)?2 (MCM)2 (MCM)2 (MCM)1 (Monolithic)1 (Monolithic)1 (Monolithic)1 (Monolithic)1 (Monolithic)1 (Monolithic)
GPU Cores28,160?14,08013,312TBA768040963840409640962304
GPU Clock SpeedTBA1700 MHz1700 MHzTBA~1500 MHz1800 MHz1725 MHz1500 MHz1000 MHz1237 MHz
FP16 ComputeTBA383 TOPs362 TOPsTBA185 TFLOPs29.5 TFLOPs26.5 TFLOPs24.6 TFLOPs8.2 TFLOPs5.7 TFLOPs
FP32 ComputeTBA95.7 TFLOPs90.5 TFLOPsTBA23.1 TFLOPs14.7 TFLOPs13.3 TFLOPs12.3 TFLOPs8.2 TFLOPs5.7 TFLOPs
FP64 ComputeTBA47.9 TFLOPs45.3 TFLOPsTBA11.5 TFLOPs7.4 TFLOPs6.6 TFLOPs768 GFLOPs512 GFLOPs384 GFLOPs
VRAMTBA128 GB HBM2e128 GB HBM2eTBA32 GB HBM232 GB HBM216 GB HBM216 GB HBM24 GB HBM116 GB GDDR5
Memory ClockTBA3.2 Gbps3.2 GbpsTBA1200 MHz1000 MHz1000 MHz945 MHz500 MHz1750 MHz
Memory BusTBA8192-bit8192-bit8192-bit4096-bit bus4096-bit bus4096-bit bus2048-bit bus4096-bit bus256-bit bus
Memory BandwidthTBA3.2 TB/s3.2 TB/sTBA1.23 TB/s1 TB/s1 TB/s484 GB/s512 GB/s224 GB/s
Form FactorTBAOAMOAMDual Slot CardDual Slot, Full LengthDual Slot, Full LengthDual Slot, Full LengthDual Slot, Full LengthDual Slot, Half LengthSingle Slot, Full Length
CoolingTBAPassive CoolingPassive CoolingPassive CoolingPassive CoolingPassive CoolingPassive CoolingPassive CoolingPassive CoolingPassive Cooling
TDPTBA560W500W?TBA300W300W300W300W175W150W

AMD's Radeon Instinct MI100 'CDNA GPU' Performance Numbers, An FP32 Powerhouse In The Making?

In terms of performance, the AMD Radeon Instinct MI100 was compared to the NVIDIA Volta V100 and the NVIDIA Ampere A100 GPU accelerators. Interestingly, the slides mention a 300W Ampere A100 accelerator although no such configuration exists which means that these slides are based on a hypothesized A100 configuration rather than an actual variant which comes in two flavors, the 400W config in the SXM form factor and the 250W config which comes in the PCIe form factor.

As per the benchmarks, the Radeon Instinct MI100 delivers around 13% better FP32 performance versus the Ampere A100 and over 2x performance increase versus the Volta V100 GPUs. The perf to value ratio is also compared with the MI100 offering around 2.4x better value compared to the V100S and 50% better value than the Ampere A100. It is also shown that the performance scaling is near-linear even with up to 32 GPU configurations in Resenet which is quite impressive.

AMD Radeon Instinct MI100 vs NVIDIA's Ampere A100 HPC Accelerator (Image Credits: AdoredTV):

With that said, the slides also mention that AMD will offer much better performance and value in three specific segments which include Oil & Gas, Academia, and HPC & Machine Learning. In the rest of the HPC workloads such as FP64 compute, AI, and Data Analytics, NVIDIA will offer much superior performance with its A100 accelerator. NVIDIA also holds the benefit of Multi-Instance GPU architecture over AMD. The performance metrics show 2.5x better FP64 performance, 2x better FP16 performance, and twice the tensor performance thanks to the latest gen Tensor cores on the Ampere A100 GPU.

One thing that needs to be highlighted is that AMD hasn't mentioned NVIDIA's sparsity numbers anywhere in the benchmarks. With sparsity, NVIDIA's Ampere A100 boasts up to 156 TFLOPs of horsepower though it seems like AMD just wanted to do a specific benchmark comparison versus the Ampere A100. From the looks of it, the Radeon Instinct MI100 does seem to be a decent HPC offering if the performance and value numbers hold up at launch.

Submit